Habitat Sees Success With ML Demand Forecasting
Case Study: Habitat Logistics
About the Company
Headquarters
Philadelphia, USA
Founded
2014
Industry
Logistics & Supply Chain
Solution Type
Demand Forecasting & Optimization for Three-Sided Marketplace
Habitat Logistics is a Y Combinator accelerated B2B delivery outsourcing platform for restaurants in the United States which works directly with restaurants for a low commission. Restaurants can receive orders from any ordering channel, and have Habitat fulfill these orders for a flat, fixed fee. Their mission is to help restaurants start, keep, and grow their business. Habitat Logistics operates in a Three-Sided Marketplace working as a link between restaurants and final consumers.
Challenge
Habitat was using a set of complex business rules to manually estimate the demand forecast by hour and assign the proper amount of delivery persons. They had hired an external Data Science consultant who applied Machine Learning to computing the forecast and showed improved results but had no expertise with turning that into an actual system on the AWS Cloud that would automatically run in an hourly manner.
Solution
We deployed a team of 5 High-Performance In-House Data Experts to plan, organize, and develop all the necessary AI and data capabilities Habitat needed to solve their challenge effectively and in record time. The goal? Robust systems and capabilities, built to last and scale with Habitat’s business.
40% cost reduction in their operations implementing Data and ML pipelines
“From data exploration and data architecture to developing and operating Machine Learning Systems, their team has the expertise and commitment to make any project a success.”
Mike Paszkiewicz
Chief Technology Officer at Habitat Logistics
We implemented a system that applied demand prediction algorithms to calculate hourly demand forecasts for each delivery area in each city. This system runs continually every hour and adjusted predictions accordingly for the next 7 days. To accurately calculate this demand, data is pulled, integrated and validated from several external data sources such as weather forecasts, special events, etc.
Using these hourly demand forecasts and input, we built an optimization system to adjust delivery person’s shift allocation to minimize costs while maintaining SLAs.
Finally, we implemented a real-time prediction system to estimate the time it would take to prepare a particular order. This allowed the dispatch system to minimize waiting times in the restaurant for the order to be ready.
Data and ML pipelines and models were implemented combining the use of Apache Airflow for process development, Python for application development and ML Flow for metric and model tracking. The whole Data Architecture for this system was designed, built and maintained by Mutt Data’s team.
Impact
Habitat saw Over 40% cost reduction in their deliveries. Habitat leapfrogged their data journey to operational success through and automated and optimized solution which allowed them to scale and extend their delivery business in a small window of time.
Want to Dive In Deeper?
Mutt Data can help you crystallize your data strategy through the design and implementation of technical capabilities and best practices. We study your company’s business goals to understand what has to change so we can help you accomplish it through a robust technical strategy with a clear roadmap and set of milestones. Talk to one of our sales reps at hi@muttdata.ai or check out our sales booklet and blog.
20%
Increase in CPMs
40%
Decrease In CPCs With Mutt Data’s Solution
25%
increase in advertising clicks without affecting organic GMV
10x
Increase in processing capabilities
Under
3%
the client witnessed a reduction in manual conciliation processes.
30%
reduction in data pipeline processing and data deivery time
40%
Decrease In CPCs With Mutt Data’s Solution
100%
Traceable and organized process execution